Banque outil

LA TACHE COMPLEXE

Un groupe IREM - Rectorat de Clermont-Ferrand,

crée des outils d’aide élaboration de tâches complexes.

 

Composition de l’équipe : professeurs de collège, lycée et université.


Les outils actuellement élaborés par l’équipe sont des documents de travail
susceptibles d'être modifiés et complétés.
Chaque outil en ligne sur le portail académique comporte une fiche professeur, une fiche élève,
et éventuellement une narration de séance et une analyse de copies d'élèves.



La tâche complexe : télécharger les documents de référence

LE CODE DU RESTAURANT SCOLAIRE

6e 5e  4e  3e

durée, conversions

 

J’ai oublié mon code de trois chiffres pour le restaurant scolaire.

Si je teste tous les codes, suis-je sûr de pouvoir manger ?

Toute piste de recherche, même non aboutie, figurera sur la feuille.

 

 télécharger les documents (word ou pdf)

LES BANDES BLANCHES SUR L’AUTOROUTE

4e  3e

vitesse moyenne

Sur les autoroutes, on trouve cette signalisation :

 

La photographie ci-dessous, prise de l’intérieur d’un véhicule roulant à 130 km/h sur une autoroute,

montre clairement que le conducteur ne respecte pas la consigne de sécurité :

UN TRAIT = DANGER - DEUX TRAITS = SECURITE !

On donne les informations suivantes :

  1. Sur autoroute les bandes blanches séparant la voie de droite et la voie darrêt d’urgence ont une longueur de 39 m et sont espacées de 14 m.

2.      Décret du 23/11/2001, R.412.12, relatif à la sécurité routière : « La distance minimale légale séparant deux véhicules est celle correspondant à un temps minimal de perception-réaction de 2 secondes ».

3.      Le temps de « perception-réaction » est le temps qui s’écoule entre l’instant de la perception visuelle du signal lumineux de freinage du véhicule qui procède et le début du freinage du véhicule qui suit.

4.      Le conducteur en infraction encourt une contravention de 4e classe, une amende forfaitaire de 135€ et un retrait de trois points. En cas de récidive dans un délai dun an et lorsque le véhicule circule dans un tunnel, le conducteur est passible de 6 mois d’emprisonnement et 3 750€ damende.

Pourquoi le législateur impose-t-il cette distance ? Quels dangers ce conducteur encourt-il ? Quels arguments peut-on lui donner pour lui expliquer ces dangers et l’amener à respecter ces distances de sécurité ?

 

télécharger les documents (word ou pdf)

UN TRAIN A PRENDRE

6e  5e  4e  3e

proportionnalité, durée

 

Tom prépare la rentrée.

Il sait que la sonnerie du collège (Ec sur la carte) retentit à 16 h 45.

Peut-il prévoir de prendre le train de 17 h 01 ?

Répondre par un texte présentant la démarche, les calculs et les arguments.

 

télécharger les documents (word ou pdf)

LE POIDS DES CARTABLES : INFO OU INTOX ?

5e  4e  3e

proportionnalité, représentation et traitement de données,

nombres positifs en écriture fractionnaire (sens et calculs), masse

 

A chaque conseil de classe, on entend dire que les cartables sont trop lourds.

Info ou intox ?

Qu’en pensez-vous ?

Vous présenterez votre conclusion et vos arguments et proposerez des solutions si besoin.

 

 télécharger les documents (word ou pdf)

USAIN BOLT

  4e  3e

vitesse moyenne

 

Le fichier zip, une fois décompressé, permet d’ouvrir les fichiers doc et pdf

qui contiennent deux liens permettant d’accéder au diaporama (fichier ppt).

 

Situation 1

Regarde le diaporama.

Ce document vient de présenter Usain Bolt et son record du monde sur le 100 m.

Pour suivre Usain sur sa course, nous pourrions utiliser :

A.     un vélo ?

B.     un scooter ?

C.     une voiture ?

D.     la Red Bull de Sébastian Vettel ?

Sur la feuille blanche, après avoir noté tes nom et prénom,

tu rédigeras une argumentation justifiant le choix de ta réponse (après recherche sur le brouillon).

Ton texte devra être suffisamment clair pour être projeté et présenté à la classe.

 

Situation 2

Observe la photographie ci-dessous :

« Quel type de véhicule devrions-nous utiliser si nous voulions suivre Usain Bolt lorsqu’il court le 100 m ? »

Sur la feuille blanche, après avoir noté tes nom et prénom,

tu rédigeras une argumentation justifiant le choix de ta réponse (après recherche sur le brouillon).

Ton texte devra être suffisamment clair pour être projeté et présenté à la classe.

 

télécharger les documents (word ou pdf et ppt)

CELSIUS ET FAHRENHEIT

4e  3e

traitement des données, calcul littéral, équations

 

Deux touristes partent en voyage aux Etats-Unis

- Ils louent une voiture dans laquelle la température est affichée en degrés Fahrenheit.

L’agence de voyage leur fournit un carnet de bord dans lequel apparaissent les informations suivantes :

- Les températures sont souvent exprimées en degrés Fahrenheit.

Pour les convertir en degrés Celsius, il faut soustraire 26 et diviser par 2.

Ainsi 46° F font environ 10°C (46 - 26 = 20 et 20/2 = 10).

Cette méthode n’est pas la plus juste, mais c’est la plus simple.

- Pour les experts en mathématiques, il faut soustraire 32, multiplier par 5 et diviser par 9 ! 

Les deux touristes se demandent s’il existe une température pour laquelle les deux méthodes donnent le même résultat.

Peut-on répondre à la question que se posent les touristes ?

Expliquer la démarche et la réponse. Toute démarche, même incomplète, figurera sur la feuille.

 

télécharger les documents (word ou pdf)

LE TELESKI

4e  3e

vitesse moyenne

 

Nina est aux Estables (MEZENC) pour une «  sortie-ski » avec sa classe.

Elle est au pied du TELESKI CHALET 2 où personne n’attend.

Il est 16 h 50 et son professeur a donné rendez-vous au pied des pistes à 17 h précises pour le retour.

Nina descend en moyenne à 15 km/h.

A-t-elle le temps de faire une dernière descente ?

La réponse sera donnée sous forme d’un texte présentant la démarche et les arguments.

 

télécharger les documents (word ou pdf)

LES PROMOTIONS

3e

proportionnalité, calcul littéral

 

  • De ces deux promotions, laquelle est la plus intéressante ? Présente la démarche utilisée.

   

Que penses-tu de celle-ci ? Explique ta réponse.

 

télécharger les documents (word ou pdf)

LES FONDANTS AU CHOCOLAT

6e 5e 4e 3e

proportionnalité, sens des opérations

 

La deuxième manche du rallye mathématique CM2/6e se déroulera vendredi 23 mars de 15h à 16h.

A cette occasion, je souhaiterais vous faire goûter de délicieux fondants au chocolat et au beurre salé dont on m’a donné la recette, toute simple :

Pour 13 fondants environ : préparation 10 min, cuisson 12 min.

Faire fondre 100 g de beurre salé avec 100 g de chocolat noir.

Ajouter 100 g de sucre, 2 œufs et 60 g de farine.

Répartir dans des moules à muffin et mettre au four chaud, 10 à 12 min, température 200°C.

Voici les ingrédients que j’utilise :

 

Disons que vous aurez droit à trois fondants maximum chacun, à quel prix me reviendra ce goûter ?

écris les différentes étapes de ton raisonnement.

Si tu as une question dont tu n’arrives pas à trouver seul la réponse, écris-la sur ton cahier.

 

télécharger les documents (word ou pdf)

LES BACTERIES

4e 3e

puissances

 

Version 1

1.      La devinette d’Alexis

Dans un bus, il y a 7 enfants. Chaque enfant a 7 sacs. Dans chaque sac se trouvent 7 chats. Chaque chat a 7 bébés chats.

Combien y a-t-il de chats dans le bus ?

2.      Les bactéries

Un laboratoire fait des recherches sur le développement d’une population de bactéries.

On a observé que le nombre de bactéries a été multiplié par 3 toutes les heures à partir du moment où l’étude a commencé.

Par combien le nombre de bactéries a-t-il été multiplié au bout de 24 heures ?

Présenter la démarche et les calculs sur papier (ou transparent).

 

Version 2

Un laboratoire fait des recherches sur le développement d’une population de bactéries.

On a observé que le nombre de bactéries a été multiplié par 3 toutes les heures à partir du moment où l’étude a commencé.

Par combien le nombre de bactéries a-t-il été multiplié au bout de 24 heures ?

Présenter la démarche et les calculs sur papier (ou transparent).

 

 télécharger les documents (word ou pdf)

LE MONT BLANC

4e 3e

proportionnalité, échelle, propriété de Pythagore

 

Mathéo imagine un téléphérique qui partirait de la ville de Chamonix et irait jusqu’au sommet du Mont Blanc.

Quelle serait alors la longueur du trajet ?

Sur une feuille, vous ferez apparaître toutes vos pistes de recherche, même non abouties,

puis vous rédigerez la réponse définitive du groupe sur le transparent (ou l’affiche) qui vous est fourni(e).

 

 télécharger les documents (word ou pdf)

LE TIPI

3e

propriété de Thalès

 

L’habitation traditionnelle des Indiens des plaines d’Amérique du Nord est le tipi.

Un tipi est constitué de longues tiges de bois appuyées les unes aux autres,

D’une enveloppe extérieure faite de peaux d’animaux et d’une porte toujours orientée vers l’Est.

Chaque perche en bois mesure 21 pieds et dépasse de 3 pieds. Le rayon du cercle tracé au sol mesure 7,5 pieds.

Le grand chef indien veut coiffer le cercle formé par le haut des perches de son tipi d’un chapeau de plumes.

Quel doit être le diamètre de son chapeau ?

Expliquez la démarche par un texte présentant vos calculs et vos arguments et illustrez avec une figure.

 

télécharger les documents (word ou pdf)

LE TIR A L’ARC

5e  4e 3e

cercle circonscrit

 

La journée commence male Monsieur Précis,

professeur d’EPS et animateur du club de tir à l’arc du collège, n’est pas content !

Les cibles qu’il avait commandées (figure_1, à gauche) pour son club viennent d’arriver,

mais elles ont été mal imprimées (figure_2 à droite).

Il manque les zones numérotées 8, 9 et 10.

Et il n’a pas le temps de s’en faire livrer d’autres pour le tournoi de l’après-midi !

Aide ton professeur à retrouver le moral et le sourire en construisant les trois cercles manquants sur la figure_2.

Un court texte présentera les étapes de construction.

Toute piste de recherche, même non aboutie, figurera sur la feuille.


télécharger les documents (word ou pdf)

LA TOUPIE

5e 4e 3e

centre du cercle

 

Jean a retrouvé dans son coffre à jouets une toupie offerte quand il était petit.

Malheureusement, l’axe a disparu. Il veut percer la toupie pour replacer un axe.

Peux-tu expliquer comment retrouver l’endroit précis où il doit percer la toupie pour introduire l’axe ?

 

télécharger les documents (word ou pdf)

LA BATTERIE DU PORTABLE

6e 5e 4e 3e

proportionnalité, pourcentage, durée

 

On m’a prêté un ordinateur portable, le voyant de la batterie clignote et le message suivant apparaît :


Je me demande combien de temps je peux rester éloigné d’une prise de courant lorsque la batterie est complétement chargée.

 

télécharger les documents (word ou pdf)

LA DEFORESTATION

6e  5e  4e  3e

aire, durée

Devant réaliser un exposé sur la disparition des forêts dans le monde, Aurélie a trouvé les renseignements suivants :
« La FAO (Organisation des Nations Unies pour l’alimentation et l’agriculture) surveille les forêts du monde tous les cinq à dix ans depuis 1946. Les derniers éléments connus datent de 2010, et on estime que durant ces dix dernières années, environ 13 millions d’hectares de forêts ont disparu chaque année. »
«  L’équivalent de la surface d’un terrain de football disparaît toutes les deux secondes dans le monde. »
«  La forêt de Fontainebleau est l’une des plus grandes forêts de France, elle s’étend sur environ 20 000 hectares si on considère également la forêt des trois Pignons. »
Combien de temps faudrait-il pour que la forêt de Fontainebleau disparaisse à ce rythme ?

 

télécharger les documents (word ou pdf)

LA PHOTOCOPIEUSE

3e

agrandissement, réduction

Ce matin, le professeur de français doit distribuer à ses élèves un poème de Verlaine.

Son document est imprimé sur une page de format A4.

Pour économiser le papier, il voudrait réduire son document à une demi-page A4.

Le bouton «  Zoom » de la photocopieuse qui permet une réduction du document lui demande d’entrer un nombre.
Peux-tu deviner quel nombre le professeur devra inscrire sur le cadran de la photocopieuse ?

 

télécharger les documents (word ou pdf)

ONCE UPON A TIME

4e 3e

théorème de Pythagore, aire, calcul littéral

Il était une fois, au fin fond de l’Ecosse, un fermier écossais, Bill Mac Rae, qui possédait une vache écossaise, Connie the Cow, et un mouton écossais, Shirley the Sheep.
Passionné de mathématiques, il décida un jour de clôturer son pré d’une manière plutôt curieuse.
PQRS est un rectangle de longueur PQ.
(C1) est le cercle de centre P passant par le point S.
(C2) est le cercle de centre P passant par le point Q.
(C3) est le cercle de centre P passant par le point R.
Bill construisit une clôture le long de chacun des trois cercles (C1), (C2) et (C3).
Puis il installa Connie sur l’aire du disque délimitée par le cercle (C1), et Shirley sur l’aire de la couronne délimitée par les cercles (C2) et (C3).
Son voisin écossais, Hugh Malcolm, lui rendit visite un jour et lui demanda qui, de Connie ou de Shirley, avait le plus d’herbe à brouter.
Que lui répondit Bill ?

 

télécharger les documents (word ou pdf)

LE CHAPEAU A PAILLETTES

6e  5e  4e  3e

aire du triangle quelconque

Léa a acheté pour une fête costumée un chapeau triangulaire. Elle voudrait recouvrir entièrement de paillettes la face avant (côté visage), mais hésite sur le nombre de tubes à acheter. Sur un tube de paillettes, on peut lire : « Paillettes pour 45 cm² ». Peux-tu aider Léa à savoir combien de tubes de paillettes elle doit acheter ?

 

télécharger les documents (word ou pdf)

L'ENCLOS

6e  5e  4e  3e

Périmètre, aire, calcul littéral, notion de fonction, optimisation, tableau de valeurs, tableur

 

Ayant trouvé 21 m de grillage dans mon garage, j’ai décidé de les utiliser pour construire un enclos rectangulaire pour mes poules.
Afin d’obtenir un enclos plus grand, j’ai pensé utiliser le mur du jardin qui formerait un côté, le grillage formant les trois autres côtés.
Après avoir placé un premier piquet en A, je m’interroge sur l’emplacement du second piquet (appelé B sur mon croquis) :
est-il important pour optimiser l’aire de mon enclos ?

 

télécharger les documents (word ou pdf)

LE BASSIN DE MONSIEUR TRIANGLE

4e  3e

bissectrice, cercle inscrit, échelles, volume du cylindre,

points de concours des droites particulières du triangle

Monsieur Triangle a un jardin un peu bizarre : il est triangulaire. Une allée fait le tour de la partie engazonnée.
Il souhaiterait installer un bassin circulaire de 80 cm de hauteur, le plus grand possible,
sur la partie en herbe mais qui ne recouvre pas les allées.
Il a réalisé un plan à l’échelle de son jardin. Il s’agit d’estimer le coût du remplissage de son bassin.

 

télécharger les documents (word ou pdf)

 

Y A PAS LE FEU ! ! !

4e  3e

vitesse moyenne, durée, égalité d = vt

Un professeur de mathématiques emprunte tous les matins le même parcours pour se rendre au collège.

Il a constaté que les trois feux tricolores qu’il rencontre sont synchronisés :

1 minute au rouge, 30 secondes au vert.
La vitesse sur cette portion de route est limitée à 70 km/h.
Il se demande à quelle vitesse constante il faut rouler pour passer systématiquement au vert
et ne plus avoir à s’arrêter et repartir plusieurs fois de suite.

 

télécharger les documents (word ou pdf)

Exemples de tâches complexes avec des travaux d’élèves

 

Ci-dessous deux exemples de tâches complexes

avec des travaux d’élèves et quelques remarques des professeurs.

 

LES BATTEMENTS DU COEUR

6e  5e  4e  3e

proportionnalité, puissances d’exposant entier relatif, notation scientifique

 

Caroline est invitée à fêter les 80 ans de sa grand-mère.

Elle se demande combien de battements le cœur de sa grand-mère a effectué dans toute sa vie.

 

télécharger les documents (word ou pdf)

ACHETER DES CD

4e 3e

équation du premier degré à une inconnue

 

Fans de musique, Antoine et Vanessa choisissent des CD chez un disquaire, dans un rayon où ils sont tous au même prix.

Antoine : « J’ai acheté deux CD et il me reste 11€. »

Vanessa : « J’avais 80€ ; j’ai acheté un CD, il me reste la même somme que toi avant ton achat. »

Peut-on trouver le prix d’un CD ?

 

télécharger les documents (word ou pdf)

« Un exemple de tâche complexe en interdisciplinarité »

Réalisé par Damien MONTAL (Mathématiques)

et Sandra SOURDILLE (Sciences et Vie de la Terre) du Collége de Champeix

télécharger et décompresser l'archive puis ouvrir le fichier "La_tache_complexe.pptx"